LECTURE 2 OP-AMP

Comparison of ideal and non-ideal Op-Amp Non-ideal Op-Amp consideration

CMRR EXAMPLE

What is the CMRR?

Solution:

$$V_{d1} = 100 - 20 = 80 \mathbf{V}$$

$$V_{d2} = 100 - 40 = 60 \mathbf{V}$$

$$V_{c1} = \frac{100 + 20}{2} = 60 \mathbf{V}$$

$$V_{c2} = \frac{100 + 40}{2} = 70 \mathbf{V}$$
(2)

From (1)
$$V_o = 80G_d + 60G_c = 80600V$$

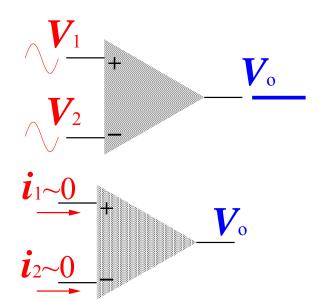
From (2)
$$V_o = 60G_d + 70G_c = 60700V$$

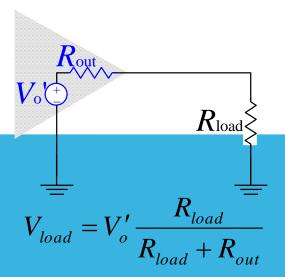
$$G_d = 1000$$
 and $G_c = 10$ \Rightarrow CMRR = $20\log(1000/10) = 40$ dB

NB: This method is Not work! Why?

OP-AMP PROPERTIES

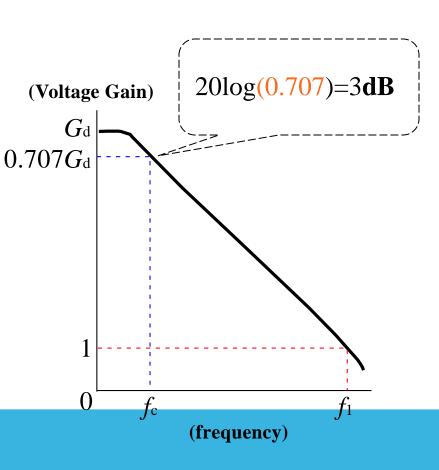
(1) Infinite Open Loop gain


- The gain without feedback
- Equal to differential gain
- Zero common-mode gain
- Pratically, $G_d = 20,000$ to 200,000


(2) Infinite Input impedance

- Input current $i_i \sim 0A$
- $T-\Omega$ in high-grade op-amp
- m-A input current in low-grade op-amp

(3) Zero Output Impedance


- act as perfect internal voltage source
- No internal resistance
- Output impedance in series with load
- Reducing output voltage to the load
- Practically, $R_{\rm out} \sim 20-100 \,\Omega$

FREQUENCY-GAIN RELATION

- Ideally, signals are amplified from DC to the highest AC frequency
- Practically, bandwidth is limited
- 741 family op-amp have an limit bandwidth of few KHz.
- Unity Gain frequency f_1 : the gain at unity
- Cutoff frequency f_c : the gain drop by 3dB from dc gain G_d

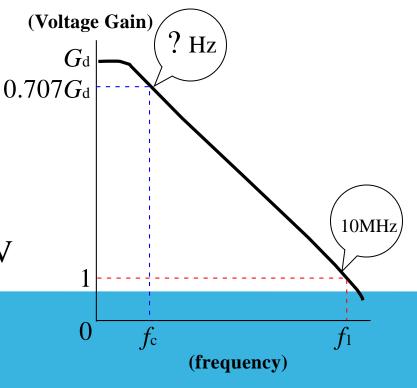
GB Product : $f_1 = G_d f_c$

GB PRODUCT

Example: Determine the cutoff frequency of an op-amp having a unit gain frequency $f_1 = 10$ MHz and voltage differential gain $G_d = 20$ V/mV

Sol:

Since
$$f_1 = 10 \text{ MHz}$$


By using GB production equation

$$f_1 = G_{\rm d} f_{\rm c}$$

$$f_{\rm c} = f_1 / G_{\rm d} = 10 \text{ MHz} / 20 \text{ V/mV}$$

$$= 10 \times 10^6 / 20 \times 10^3$$

$$= 500 \text{ Hz}$$

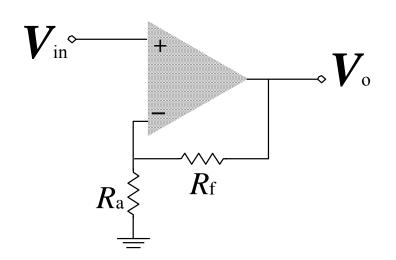
IDEAL VS PRACTICAL OP-AMP

	Ideal	Practical	Ideal op-amp
Open Loop gain A	\propto	105	$V_{ m in}$ $V_{ m out}$
Bandwidth BW	œ	10-100Hz	$Z_{\text{out}}=0$
Input Impedance Z_{in}	\propto	>1 M Ω	
Output Impedance Z_{out}	0 Ω	10-100 Ω	Practical op-amp
Output Voltage $V_{\rm out}$	Depends only on $V_d = (V_+ - V)$ Differential	Depends slightly on average input $V_c = (V_+ + V)/2$	$V_{ m in}$ $Z_{ m in}$ $Z_{ m out}$ $V_{ m out}$
	mode signal	Common-Mode signal	AV_{in}
CMRR	∞	10-100dB	=

IDEAL OP-AMP APPLICATIONS

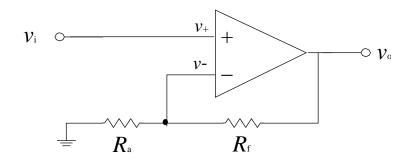
Analysis Method:

Two ideal Op-Amp Properties:

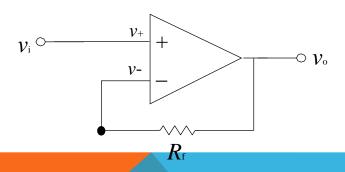

- (1) The voltage between V_{+} and V_{-} is zero $V_{+} = V_{-}$
- (2) The current into both V₊ and V_− termainals is zero

For ideal Op-Amp circuit:

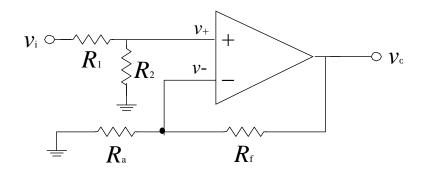
- (1) Write the kirchhoff node equation at the noninverting terminal V₊
- (2) Write the kirchhoff node eqaution at the inverting terminal V_
- (3) Set $V_{\perp} = V_{\perp}$ and solve for the desired closed-loop gain


Noninverting Amplifier

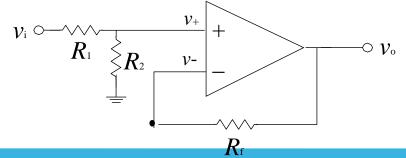
- (1) Kirchhoff node equation at V_{+} yields, $V_{+} = V_{i}$
- (2) Kirchhoff node equation at V_{-} yields, $\frac{V_{-}-0}{R_{a}} + \frac{V_{-}-V_{o}}{R_{f}} = 0$


(3) Setting $V_{+} = V_{-}$ yields

$$\frac{V_i}{R_a} + \frac{V_i - V_o}{R_f} = 0 \quad \text{or} \quad \frac{V_o}{V_i} = 1 + \frac{R_f}{R_a}$$


Noninverting amplifier

$$v_o = (1 + \frac{R_f}{R_a})v_i$$


Voltage follower

$$v_o = v_i$$

Noninverting input with voltage divider

$$v_o = (1 + \frac{R_f}{R_a})(\frac{R_2}{R_1 + R_2})v_i$$

Less than unity gain

$$v_o = \frac{R_2}{R_1 + R_2} v_i$$